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I\ ABSTRACT

fThe system under development, VISIONS, is an investi-gation
into; general issues i-n the construction of computer vision
systems. The goal is to provide an analysis of color images' of
outdoor scenes, from segmentation (or partitioning) of an image
through the final stages of symbolic interpretation of that
image. The output of the system is intended to be-a symbolic
representation of the three-dimensional worl'd depicted in the
two-dimensional images including the naming of objects* their
placement in three-dimensional space, and the ability to predict
from th his representation the rough appearance of the scene from

21other points of view. Research in segmentation and
interpretation has been separated into the development of two
major subsystems with quite different methodologies and
considerations.

The focus of this paper is upon the interpretation system.

The primary emphasis will be on the development of strategies by
which several knowledge sources (KSs) can be integrated using
expected knowledge stored in structures called 3D and 2D schemas,
each ofwhich may be general or specific to the scene under

v consideration. A series of increasingly more difficult
experiments is outlined as an experimental methodology for
developing schema-driven (e.g., top--down) control mechanisms;
each succeeding experiment will assume a set of weaker
constraints, representing image interpretation tasks where a
decreasing amount of knowledge of the situation is available.
Experimental results show current capabilities of a number of KSs
and the effectiveness of a specific 2D schema in the

U interpretation of a scene.
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LIN MEMOkIUM

Cesare Parma, 1947--1979

On August 30, 1979 Cesare Parma, a graduate student in the
COINS Department, was struck and killed by lightning during a
sudden thunderstorm in Amherst# Massachusetts. Many of the
results on schema-driven image interpretation in Section VI of
this paper were due to the hard work and creativity of Cesarj.
All the members of the VISIONS group benefited greatly from the
blend of his strong intellect and the natural warmth of his
personality. We are deeply saddened by this loss, and this paper

Lis dedicated to the mon ory of this fine individual.
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I
SI, KbJWJg2EDIREgTED PHOCESJN

Ths system being developed is called VISIONS and is designed

to provide an analysis of color images of outdoor scenes, from

segmentation through symbolic interpretation, The VISIONS system

J is decomposed into two major subsystems: a "low-level" system

which processes the large numeric arrays of sensory data, and

then .needs the "high-level" interpretation processes, which

construct a description of the world portrayed in the scene.. The

output of the system is to be a symbolic model of the

three-dimensional world depicted in the two-dimensional images

including the names of objects, their placement in

three-dimensional space, and the ability to predict from this

model the rough appearance of the scene from other points of

view.,

The original design of the VISIONS system was heavily

influenced by a commitment to knowledge-directed interpretation,

and this commitment has been maintained. The emphasis of this

paper is on the form of knowledge structureS, called schemas, and

on the control structures necessary to coordinate a variety of

complex processes, which are referred to as knowledge sources, or

KSs [LES77. A knowledge source is a process which specializes

in the formation of an hypothesis about an interpretation of the

image, based upon a particular type of available visual cue and

partially processed sensory data., For example, the perspective

KS might infer the physical size of an object depicted by some

region in the image, and the object size KS might order, ir, terms
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of a confidence measure, the plausible object identities based

upon that size. There are serious problems to be faced in the

general application of these processes in an integrated fashion.

In otr system schemas are the means by which we deal with the

problems of control of the KSs. A schema is a knowledgQ

structure about a particular visual concept, say a road scene,

with procedural components for properly invoking a subset of KSs

in a coordinated manner.

The effectiveness of many AI systems appears to be derived

from either the constraints available via prior knowledge) or the

restrictions of a specific task domain, or a combination of both.

The natural language understanding system of Schank CSCH753 is

heavily directed in a top-down manner by knowledge structures

called scriptsi recently, they hiive proven sufficient for

extracting zummary descriptions of a large number o? actual wire

service news stories [SCH79]. The HARPY speech understanding

system [LOW76], one of the most effective speech systems to date,

embeds a grammar and vocabulary in a network of expected

utterances. The system operates top-down by matching paths in

the network (which represent possible sentences) against the

utterance. One can view this system in terms of a schema for

each sentence an the representation oF this information in a

storage effident form.

Ther? re various special-purpose vision systems whose

effectiveness may be traced directly to the utilization of

domain-depenjent simplirations, for example blood-cell analysis,
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assembly line parts inspection, etc. It is our belief that the

use of schemas ([ARB77] or frames [MIN75], or scripts [SCH77])

provides a bridge between general-purpose and special-purpose

systems [BAL78, HAN78c, NEV78]. The development of an individual

schema and the verification that it is applicable may be as

tractable as the development of a particular strategy in a

special-purpose system. Knowledge oF the front view of a

particular house to some degree should be usable in a manner

similar to knowledge of the structure oF a complex machine part

on a conveyor belt.

It x' generally agreed that while research in computer

vision is definitely progressing, the problems have been found vo

be extremely difficult. Our initial efforts have been directed

at the construction of a system with sufficient flexibility and

generality to explore a variety of issues without requiring

substantial systems modifications as the research evolved. As to

be expected, the price of such efforts at generality is slower

development of the system than we desired, slower than would have

been possible with a less flexible special-purpose system.

bocause of the magnitude of the probleum, our research methodology

has ,een to focus on modular :omponents of the system under the

constra' ,s of a general system desigii.

We wish tL. make it clear that we do not believe that

computer vision ought to be primarily a top-down process. Many

inpiTtant mecPianisms of human vision appear to be constructive

processes which transfcirm sensory data without recourse to
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semantics [BAR78, HOR77, MAF76, MAR/U]. The roseavtLh vefurt

proposed here, however, attemp.s to direct the application of

some of these processes under the guidaice of knowledge-oriented

constraints. It will be interesting to see the degree to which

this approach can be made general.

II. ADDITIONAL RgLATED L.ITERATURE

There is a very large body of literature that is relevant to

the development of effective computer vision systems. In fact it

spans the fields of computer science, electrical engineering,

cognitive psychology, mathematics, art, etc. with topics that

include the physics of light and surfaces, shadows and

highlights, image segmentation, color, texture, two- and

three-dimensional shape, perspective, occlusion, motion',

stereopsis, representation of knowledge, inference, and more. It

is not feasible to review this literature here, but a recent book

Comuter Vision Sustems [HAN78a], edited by the authors,

documents the state-of-the-art in many of these areas. Here we

choose just to mention a few of the many efforts in image

understanding systems and leave reference of others for the more

detailed sections of the paper.

Tnore have been interesting and somewhat successful attempts

to integrate the segmentation and interpretation processes. A

decision-theoretic approach to image interpretation by Yakimovsky

and Feldman EYAK73, FEL74] produced a region merging process that
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was integrated with semantic interpretation. Effective results

on chest x-rays and road scenes wrre achieved. Tenenbaum and

Barrow ETEN773 demonstrated that a constraint-satisfaction

process could be used to block erroneous region merges in their

interpretation-guided segmentation system (IS). This system was

generalized into A probabilistic relaxation process for

propagating constraints under uncertain interpretation [BAR76].

There are a variety of image interpretation systems where

the analysis does not employ three--dimensional representations

and processes. In such cases, the output of the system usually

is the extraction and labelling oF relevant entities in the

image, for example the labelling of each 2D region with an object

identity. Sakai, Kanade, and Ohta tSA76] produced a partial

labelling of major areas in a building scPne (though there were

only five possible objects in the data baLe). Shirai [SH178] has

developed a systemf which fits smooth curved lines to segmented

edges; this system has beer used to interpret a desk scene

containing a variety of objects. Ballard, Brown, and Feldman

[BAL78] are using a flexible knowledge-directed system which has

been applied to both aerial images and chest x-rays. Levine

CLEV78 has been examining scenes of human figures, cartoons, and

landscapes; he has obtained interpretations of several cartoon

images. Bajcsy [BAJ76] has used a smaill semantic network to

extract riveT and bridge regions in aerial images. Uhr [UHR78]

has been developing a very general system for both segmentation

and scenT interpretation using a paral)el -array processing system
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called recognition cones; preliminary results have been produced

on a house scene. A group at Hughes Research Labs EDUD773 has

developed a system for 2D segmentation and matching of objects

with long straight lines (such as buildings). Rubin ERUB773 has

extended the basic approach of the HARPY CLOW763 speech

understanding system to a scene interpretation system for

matching an image of a city skyline with a set of such images

from different points of view. Mackwnrth rMAC78] and Havens

CHAV783 have addressed issues of control, based on a cyclic

theory of perception, in the context oP interpretation of a map

relation system.

Interpretation systems using three-dimensional

representation; can be applied to a wider class of imagery but

are correspondingly far more complex. Consequently, much of the

work in 3D scene description (interpretation) has primarily been

restricted to polyhedral models of objects CROB65, WAL753,

although there has been interesting work on generalized cylinders

as a repraser-.ation for curved surfact.s LNEV77, AG172, MAR77].

Another significant body of research has taken place at levels

below object recognition, in particular the extraction of surface

information based upon a camera model, illumination model, and

surface properties (HOR75, HOR77, WOIY7/, MAR78 DAR78]. This

work promises to provide significant incight into constructive

mechanisms in visual perception.

Finally, there is related ,oork iin spech understanding that

has influenced our research, in particular the Hearsay system
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EERM750 LESS773 whose general structure has been followed in our

own research.

III. CONTROL $TAEGE AND IMG .I RpRETATIgN

II1. 1. Siltg.ieLL ftz Q2.flif tr, ItULrth ! .tin. Ptosesi

In the past we have raised two important issues of control

in our system: the basis upon which KSi are to be invoked and

the means by which alternative hypotheses provided by KSs are to

be used. Our system was organized to deal with the delection of

appropriate KSs and a search space of interpretations by

employing a hierarchical modular coittrol strategy [HAN78b,

WIL77. This computational mechanism allows user-defined

strategies to be constructed hierarchically out of modular

components.

This approach required considerable machinery for dealing

with issues of search, and some oF these issues drew our

attention away Prom the central issues of vision. The top-down

approach that is suggested by schemas bypasses problems of

recovering from errors and the inherent combinatorics of a search

space of alternatives, at least until we more fully understand

the reliability, robustness, and redundancy of our KSs when used

in this manner. However, as we will point out, the top-down

approach does not imply a complete avoidance of bottom-up issues.

Schema instantiation and the application of a general schema to

specific images, for example, will require the use uf bottom-up



8

processes. In this case, however, the purposes and goals of the

bottom-up processes are more specific and well-defined.

III. . in-1 teroretation via Sc.hEnas

In the following sections we outline a highly structured

approach to the development of general top-down image

interpretation. A key problem is to develop effective ways to

employ schemas after they are somehow accessed. In some of the

experimental stages that we will outline, thz g2J is to

interret. an I us.g eithetr A .c ,_ j. ic 2 I.genral scene
Ji JZI ite L~kqwn Perspective v~igoi n t.

Thus, the relevant scene schema is assumed to be known, but the

specificity of the information varies. ilefore describing our

experimental methodology, let us note the difference between

specific vs. general schemas, 3D vs. 21) 5chimas, and known vs.

unknown perspective viewpoints.

specific schema - a schema capturing a particular instance of

a given type of scene or object, e.g., a particular house,

a familiar section of road, or a specific car such as your

own;

general (prototypical) schema - a schema representing a

standard or prototypical modsl oF a scene or object, such

as a house scenp, road scene, or" car scene, but not any

specific house, road, or car scrie;
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3D schema - the 3D description of a scene or object in a local

coordinate system; this involves the representation of

surfaces and volumes, ane the relationships between them;

2D schema - the 2D appearance of a 3D schema relative to a

viewer-centered coordinate systemi this is the way a 3D

schema would appear from a particular point of view;

unknown perspective viewpoint - in this case a known schema

(general or specific) can only be used as a 3D schema,

since the relation,,hip between jtt. local coordinate system

and the viewer's coordinate syftem is unknown.

known perspective viewpoint - if the relationship between the

coordinate systems of the schema and viewer is known, then

the 3D schema can be used to generate a plan for the scene

in terms of a 2D schema.

Under tHis categorization, a getie'al 3D scheme is a

structure describing default features of objects and general

relationships between sets of objects which are expected to hold

across a schema class [MIN75]. A speciPic 3D schema is a general

schema in which features and relationships have been atzigned

(more) precise values and in which Ceatures and relationships

unique to the particular environment have been added. In fact

top-down interpretation of, let us saU, a road scene using a

general 3D schema would then involve the construction of a

specific 3D schema of that road scene.

1

I
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A specific 2D schema is a transformation of the

corresponding specific 3D schema, given an assumed view angle.

The transformation according to view angle is necessary in order

to match the specific 3D schema to the image. Similarly, a

Sjoneral 2D .chema represents a transformation of the general 3D

scheria given a view angle; in this case, the general 3D features

and relationships are mapped into general 2D features and

relationships.

111.3. 6n Qvitrimental Methodoloau

In a system as complex as VISIONS, there exists a wide range

of plausible strategies for guiding the interpretation process.

We propose to explore these strategies by means of a set of

carefully defined experiments of increasing difficulty and

generality. By controlling the amount and type of information

provided, different portions of the system can be exercised and

different strategies to use the information can be daveloped.

We separate the schema-driven operation of our system into

distinct tasks:

a) TgoDown jnterpretation of maQe j i_ Shmii - this

involves the utilization of a relevant schema as a

top-down plan for interpretation; it requires coordinated

application of the KSs, guided bg the schema, to various

portions of the image.
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and b) Bottom-Up Instantiation 2± -- this is the process

of selecting a schema that is relevant to the

interpretation of the image; in eFfect, it is the problem

of finding cues and paths of inFerence through long term

memory which imply a prototypical context which ought to

be used.

These tasks overlap a third task which is one of the most general

goals of (computer) vision research:

c) Bottom-Vp Interoretatiqn Rt .j lges - the construction of a

surface/volume description of the physical world in the

image without the use of prior high-level knowledge; it

is expected that insights into the mechanisms by which

this task might be accomplished will be gained by succest

in achieving th4 goals set forth in (a) and (b) above,

particularly the use of general schemas in interpreting

scenes.

Our research effort is currently Focussing on tasks (a) and

(b), above. Primary emphasis. has been placed on

schema-controlled strategies for employing the KSs, but there is

continuing effort on the instantiation of the reievant schema.

The remainder of this section of the paper will outline

experimental stages of system development# and later sections

will provide experimental results for the first of these stages.
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111.4. ExAgjjmnta! Stages in Schema--Driven Interpretation

jtajag : The specific scene schema is known;

the viewpoint is known.

In Stage 1 experiments, the system in, in effect, told what

it will see. It must merely match its highly constrained

expectations to what appears in the particular scene. In these

experiments, a specific 2D schema is directly available. The

research focus is on the structure of the schema, the control

structure for driving the KSs directly Prom the schema, and on

mechanisms for consistently integrating the hypotheses returned

by the KSs into the schema. This experiment is an exercise of

all the components of the system and its success is fairly well

ensured. Since the specific 3D schema is available and the point

of view is known, a 2D schema can be qeyierated which closely

matches the appearance of the 2D image. The 2D schema provides a

powerful plan for directing various KSs in processing the image

and interpreting the scene. Some of the results cited later in

this paper are a partial exercise of this capability. Those

results, we emphasize, should be viewed as exercises in

demonstrating the integration of the system.

Stage a: The general scene schema in known;

the viewpoint is known.

Stage 2 tests the system's ability to interpret a scene

using a prototypical schema instead oP the specific schema.

Thus, the general knowledge of road 5crnes would be used to
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interpret an image of some particular road scene. The spatial

constraints are more general and any given object in ths schema

may or may not appear. Since the viewpoint of the general schema

is known (e.g., looking down the road), the general 3D schema can

be used to generate a general 2D st.hema which then provides a

list of key region, line, and vertex Features, as well as rough

spatial locations and spatial relationships between features that

might appear. Strategies are needed that have flexibility in

locking onto any relevant characteristics which are extracted

from the 2D image. The processed sensory data must be used by

the schema in constructing the description of the particular road

scene. While certain relationships are expected, for example

converging lines of the sides of the road, their existence and

location in thu image can only be determined by application of

some of the KSs.

SteUt ;: The specific scene schema is known;

the viewpoint is unknown.

Stage 3 exercises a different processing capability of the

system: the ability to manipulate :31) representations in the

select;ofi of the probable view angle. It must rotate and

translate a 3D description of a particular scene in order to

generate a 2D view which matches the scene. The problem is

simplified from the general case because the specific 3D schema

is made available. Therefore, if the pTruper viewpoint can be

determined, a very good match is ensu'ed (c.f. results of Stage

1 in Section VI. ). Here, important information about the
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viewpoint may be provided by the orientation of line segments,

the 2D shape of regions, and spatial relationships between

regions in the image. In addition we can attach information

about standard viewpoints to the 3D schema.

Stla 4_: The general scene schema is known;

the viewpoint is unknowi,.

Stage 4 is an integration of the techniques developed in the

first three. The i'ocus here is on the use of bottom-up

information to constrain the general relationships found in the

general schema and to obtain the most likely view angle. It is a

non-trivial extension of Stages 2 and 3 bvcause even the proper

viewpoint still leaves a potentially large degree of variability

in the matching and interpretation procvss. Success here will be

dependent upon the quality of the KS's developed during the first

three stages and the effectiveness of the control strategies

developed in the last two stages.

11. 5. Bottop- p Instantiation of Schemas

itaugj t: The general scene scheme js unknown and

must be hypothesized and verified.

Even if experiments in Stage 4 are successful and a general

3D schema from an unknown viewpoint cart be used for interpreting

an image, there is still the serious problem of determining the

relevant schema to employ. In a gp.neral system for scene

analysvis, the knowledge base would be expected to contain many
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schemas. Given the high cost of computation expected to be

associated with schema-controlled KS invocation, all possible

schemas cannot be applied to see which best fits the situation.

Many researchers have worried about problems of search and error

recovery in an enormous search space of possibilities, We have

decomposed the problem of applying the correct schema from the

problem of schema instantiation so that the different issues

involved do not get confused.

The accuracy of schem3 instantiation is dependent upon the

degree to which features can be extracted from the sensory data.

As bottom-up mechanisms begin to construct a model of the image,

features of this model can be matched against the available

schemas in long-term memory in order to select a schema that is

relevant to the image. The problems here are related to both 2D

and 3D schemas. Since the viewpoint is unknown, features of 2D

shape which are extracted from the image cannot be matched

directly against the schema. Rather, knowledge of possible

perspective transformations of the rhi)pe features must be used

during the matching. This is facilitated by storing with the

schema prominent 2D features from important or common points of

view; this can be accomplished by nieriis of "standard-view"

orientation vectors attached to the schema or to parts of the

schema. However, these vectors do not obviate the need for

additional mechanisms which can suggest plausible orientations if

the given scene does not conform to the standard views.
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Inference networks [DUD763 may prove to be effective in

integrating the implications of a number of uncertain hypotheses

at various lower levels of representation. They allow the effect

of multiple hypotheses (in the for, of probability updates on

nodes) to be simultaneously propagated in the network. After

propagating these inferences up to the schema level, schemas with

high posterior probabilities can be selected. There are a

variety of problems which have not yet been solved, such as the

problem of loops (closed paths) in inference paths! the

difficulty of estimating joint probability distributions of n

nodes, and errors due to inconsistenc4 of binary (or m-ary, m

less than n) approximations of the joint probability

distributions.

Stage 5 is the lsast constrained of the expeTiments thus

far, and depends primarily on the ability of the bottom-up

constructive mechanisms to transform the scene data in such a way

that the appropriate higher level KS's can be applied and a

schema instantiated, The development of these constructive

mechanisms foreshadows Stage 6, onle of the most general and

difficult problems in vision.

III. 6, B Interoretation of ImaQtjt

StgJe j: The goal is to construct a (partial) 3D

surface/volume descriptioii without

access to schemas.
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It can be argued that research on vi'Aon ought to begin with

the b'ittom-up constr' ...ive mechanisms and the development of a

general theory of vision. Often humans can recognize surface and

volume properties and develop a sense oF 3D space even when there

are virtually no object semantics in the image. There is much to

be learned from more constrained approaches which do not involve

higher level knowledge CHOR75, HOR77, PAR78, MAR78]. However,

they cannot be expected to solve the general vision problem.

'Given the complexity of our images, we do not expect that the

current KSs will be sufficiently reliable, or generally relevant,

to be effective over most of the image without guidance by

schemas.

Nevertheless, the insights and mechanisms developed in the

previous stages should significantly ovei-lap those needed in

Stage 6. We expect some of the KSs (e.g., occlusion, 2D shape,

spectral attribute matcher) to provide useful information in the

general interpretation construction process. Stage 4 experiments

require the system to lock onto visual attributes in the image

which are cotsistent with schema expectations. The location,

size, and number of objects in a scheme k. g., shrubs in front of

a house, the number of windows on a wall oP a house, etc.) will

vary. Therefore) mechanisms which use the visual characteristics

in a manner consistent with bottom-up ana lysis are required in

o7.er to use the general 3D schema.
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IV. TI& SEQMENIATIQN ALGORITHMS Efl. I U1_LC-LEVEL SiE~gi

The VISIONS research group has maintained a long-scanding

research effort in low-level image analysis. Our goal has been

to produce a system which can initially provide a segmentatian to

drive the image interpretation process, and which later can

receive semantic feedback to direct low-level processinV in the

refinement of that segmentation We cannot discuss the full

range of our segmentation efforts; they are documented in a

series of reports and papers LNAG79, KMI79, HAN78b, PRA79, PRA80,

OVE79, HAN8Oa]. Here, we limit our discussion to a brief

description of two algorithms, an edge relaxation algorithm and a

histogram-guided region relaxation algorithm. Both the edge

relaxation process and the region Formation process are

u-idergoing continuous development.

All algorithms are implemented in a t-imulation of a parallel

hierarchical machine architecture, called a "processing cone",

for processing images CHAN74, HAN8Ob]. 1he cone is relateJ to

similar structures proposed by [UHR74, JAN78, TAN8O, ROS79a,b].

The segmentation processes has-ically involve two

complementary relaxation labolling pi cesses EROS76, ZUC77,

DAV763 for partitioning images into ruions and boundaries,

either of which can be preceded by a sophisticated smoothing

algorithm COVE793 in a preprocessing piti.s on the image, Yhe

boundary formation process responds to local changes i;. the data,

while the region formation procest it, sensitive to global

similarities in the data. An earlier version of the region
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algorithm has provided the data upon which the interpretation

processes in this paper are applied.

IV, 1. 94.u R*Iagation A Boundaru Copt jt&L

The edge/boundary analysis utilizes a representation of

local discontinuities in some visual Peature (e.g., intensity or

color) as a collection of horizontal and vertical edges located

between individual pixels. The iterative edge relaxation

processes then allow contextual interactions to organize

collections of edges into boundary segments [PRA79, HAN78b].

Figure 1 provides sample results of this process.

IV. 2. Histogram-Guided Region Relaxatj.o

Region analysis is based on cluster detection in the

histogram of some visual feature LIIAN78b, NAG793. Prominent

peaks in the probability density function of a feature or in the

joint densitv function of a pair of Peatures indicate the most

frequently occurring (or co-occurring) values in the feature

space. The region Formation process therefore utilizes global

I' histogram cluster labels, lefined by the peaks, with pixels.

These peaks also allow likelihoods of cluster labels (computed as

a function of the spatial location of the peaks relative to the

spatial location of each individual pixel in feature space) to be

issociated with each pixel. Interactions between the label sets

of pixels in local neighborhoods air thn used to organize
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Figure 1. Boundary segmentation
via edge relaxation. (a) intensity
image of a 128x128 poetion o, a
suburban house stene. (b) Closeup
of a portion of roof trim and a
sequence showing the effect of

iterative updating of edge likeli-
hoods via constraints of boundary

continuity. (c) Initial edge
probabilities. (d) Ec.ge probabil-
ities after 2 iterations. (e) Edge
probabilities after 20 iterations.

(a)

N(C)

(h) (c)

it - . J t



21

connected sets of pixels into regions (i.e., connected sets of

pixels all with high probability of the same label constitute a

region). Figure 2 outlines results of applying the

histogram-guided region relaxation algorithm.

Results of an earlier version of the region relaxation

algorithm appear in Figure 3. These results form the basis of

experiments in the remainder of the paper. Because of previous

limited computational resources on our old computer facilities

(PDP-15 with 96K bytes core), the segmentation was obtained from

an image with a resolution of 128xJlD pixels. This image was

derived from a 256x256 quarter of a 512xbi ' array# which was then

further reduced by averaging to 128xfle(. The current processing

is on a VAX 11/780 with 1 megabyte core, and processing of images

with higher spatial resolution is now typical.

V. SUMMARY Dijft1Ei-gN 9E I& hLg1!jL SQLLBM ANIaI&

EXPER IMENTS

This section provides a general overview of the knowledge

sources in the VISIONS interpretation system. Knowledge sources

are the means by which hypotheses are generated and verified. In

some cases, the KSs have been developed only to the point where

the results are reasonable. The advantage of this approach is

that it allows a minimally complete sy!;tem to bv configured and

run. The input/output and functionality of each KS is clearly

specified and can be improved as time and resources permit.

II
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'Il

(a)

(b)

Figure 2. Region segmentation via relaxation histogram cluster labels.
(a) Initial intensity image of a 123x]28 portion of a house scene
derived by averaging from an image of higher resolution (previous
limitations on computational resources dictated this limitation).
(b) Resultant segmentation superimposed on intensity image. Note
that there is a difference in aspect ratio in this image due to
differences in the displays used to generate the picture.
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FIJurei . Segmlentation data Used In exp)erimnts. These results of

region formal Lon via relaxation on cluster tabe~ s were produced
by an earliler version oi the al-goritlim whichl produced the results
in Figure 2. The region segmentation hias been tonverted to a region
bundary representat ion and] region labels are shown. They form

the bas is of thle experimets deser ibtd iii later ec 'n.*Note

hlat only large regions or regLwnS mentioned in paper are numbered,

1)0t al11 regions have a un iqoe label.

*'i'lie integrat ion o i the edge and region segnten tat ioni is the f-,Oeus

o he Currenxit Ph.DI. research Ot Itilf Kohlecr.
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A set of eleven modular KSs and severozl representations will

be briefly reviewed. While we canniot discuss each of these in

detail in the limited space of this pape'r, a short discussion of

each KS and, wherever possible, a simple example of local results

is provided. However, these local rerults must be viewed in the

context of the evolving design of the uwhole system CHAN78b,c].

A base-level system has been implrmented and is operational

to the point where interesting experiments, such as the ones

described in the following sections, are being performed. In

building this base-level system, an attempt was made to provide

sufficient generality of processes and representation -- function

and structure -- to allow us to work on different types of

scenes, to easily add knowledge in both active and passive form,

and to define and execute different types of interpretation

strategies.

The reader should note that thc results cited in this

section wer2 obtained from a version of thv system running on the

University Computing Center's CYBER-74 time-sharing system. The

system is implemented in GRASPER IMICJW78], a high level graph

processing language built in ALISF [KONY]., The system has been

transferred to the COINS Department VAX 11/780 and integration

with the VISIONS low-level system is in progress.

Table 1 provides an overview of the set of KSs currently

available and briefly discusses the representations employed in

various parts of the system. Cross references to more detailed

discussions and/or results are included.
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TABLE 1: SUMMARY OF KNOWLEDGE SOURCES \ND REPRESENTATioNS

Nare Brief Statement o[ Function or Purpose Cross Rferences

Low-LeveL The goal o( the low-level system is the segmentation IV
Segmentation of an image into visual primitives (regions, boundary Figures 1, 2, 3
System* segments, and vertices), and the extraction of a

range of features to be used by the various knowledge
sources (KSs) of the interpretation system.

RSV Structure RSV is a symbolic layered graph structure of regions, 'iure8
line segments, and vertices containing the segienta- ig
tion results and feature descriptors. This data
structure is stored in short-term memory (STM; see
below) and represents the processed visual data upon

. which the interpretation is based.

LTM LTM is a hierarchical representation of general (i.e. V.2
(Long-Term non-image specific) world knowledge organized into Figures 8, 9
Memory) natural. levels of abstraction: schemas (stereotypical

scenarios), objects, volumes, surfaces, regions, line
segments, and vertices.

STM STM is a hierarchical structure of the same form as V.2
(Short-Term LIMl and used for constructing an interpretation by Figure 8
Memory) means of the knowledge sources. An interpretation is

then the collection of instantialed :iodes in STM.
The RSV structure is the bottom three levels -- all
other levels are initially empty.

inference' It is a network of a priori probabilities of nodes 111.5
Net KS and conditional probabilities between nodes; It. is V.6

defined on the arcs and nodes in M, and are the VI.8
means by which implications of local hypotheses may Tables III, V
be propagated upward and downward through the layered
structure. Any hypothesis generated by a knowledge
source can then be used to generate further
hypotheses.

12D Curve This KS is desig",,d to produce smooth fits to V.1
Fitting KS boundary segments in a segmentaition. It utilizes VI 3

generalized cubic splines, automatic resegmentation Figures 4-7, 21
of boundaries at points of high curvatre, and curv
fitting techniques.

__ _ - - -- H - - ~ ----- - - - - - ... .....-

2D Shape KS I This KS allows symbolic classification of the shape V3
o" regioas. The confidence tat a given image region hasi VI.4
It pdrt icu.i r primiLtive 2D shape will be returned. The Figures 10, 22-24
result, , A Iow patLhs tor stirlfda e volume hiypotheses via I11,Table I1

OccIu ion KS This KS uses the resuilts produced by 2D shape to analyze V.4
I Ukct o1 (Vet Lk,' ) I ypt- Lo pl odu, o hvpothest,, about,
II it IVC dept-h I Lu n IA ht'twtu Ai btutlir .n nic it,

I s , t ' ti~ikl i.I V ,L'e'lt . S; p 1 dIU 1100t ly vti- h11
c w ve •at julluLioS, i 'vi h 1m,1y he tll., :!d tor
tit r- IdcLL y011 C t W S..'

<Ftullde'd by the til I c c , I tc 1 ti el k , I ,t)' I . . .,,,. _ j, i .
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Name Brief Statement of Function or Purpose lCross References

Spectral. It hypothesizes object identities of a region on the V.5
Atribute basis of a comparison between region attributes Vl.2

Matcher Y% (color and texture) and statistics of these features Figures 11, 19, 20

attached to the object nodes in LTM. It is designed

primarily for objects for which these attributes are

reasonably invariant across images (currently sky,
bush, grass, tree, road).

3D Shape KS It uses a representation for 3D shape with curved V.

surfaces, their organization into objects and object IV.8.3

parts, and mechanisms for manipulating the represen- Figure 12

tation. It is called a quilted solid and is defined
by collections of Coons' surface patches bounded by
cubic splines, in an object centered coordinate
system. Quilted solids are joined together by spline
blending functions.

Perspective KS The goal is the hypothesis of surface orientation, V.9
size, and/or distance in order to produce a partial V.10
volume/surface plan of the scene. The currenL VI.6
version focusses on relationships between elevation, Figures 14, 15, 27
height, range, and width of surfaces given a camera Table IV
model and a .,et of assumptions regarding surface
orientation.

Horizon KS It uses the horizon schema (the most general outdoor V.11
schema which relates sky, ground, and horizon) and Figures 11, 16
the camera model to fix the location of the horizon.
It is used to filter other hypotheses on the basis of
their relationship to the horizon.

Object Size KS This module is designed to generate object hypotheses V.12
on the basis of the image size of a region. It VI.7
compar" the computed physical (i.v., real world) Figures 17, 28
size of a surface, determined by the perspective
module, to the physical size of objects in LTM.

3D Schema The 3D schema captures stereotypical visual events 111.2
by organizing subsets of information in LTM into 111.4
higher order complexes of expected scenarios (e.g., V.8
a road s,:ene schema). It may be either specific Figure 13
(a particular known scene) or general. The repre-

sentation is stored in a local coordinate system and
contains control information for top-down interpreta-
tion. A projection of a 3D schema produces a 2D
schema.

21) Schema A 21) ,h la pro jeet ion 'k 0 1 a Ih emI1 ron 111.2
gtven poitit ol view. 'The prolectlo carries along 111.4
controL st1rat egy information and 1'eatures oi the VI.1-Vt.5
proection (e.g., surface orientation, relative to Figures 18-28
viewpoint, et, .). It is used to direct top-down

interpretation of the image.

I)

L 2
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V. 1. 20 Curve Fittna&

The output of the segmentation processes is represented in

terms of horizontal and vertical edges for a variety of reasons,

They involve concerns about connectedness of edges and the

ambiguity that occurs when edges oP varying orientation are

associated with pixe)s ERIS77, HAN7WK). It is necessary to

transform this rectilinear edge data into a Lontinuous

representation. By fitting smooth livies to the data, they more

accurately reflect the original vit.tal information. However,

various problems occur when the best straight lines are fit to

the segments that form the low-level output. The first problem

is that the endpoints of a segment do not define the "natural"

portion of a boundary over which lines should be fit (refer to

Figure 4b). This problem can be avoided by using piecewise

linear fits to line segments by decomposing line segments on the,

basis of points of high curvature, but there are still

difficulties. rhe enlargement of a juviition is shown in Figure

4(c) and one can see problems with best-Pit straight lines not

meeting at a point (Figure 4d), or movment of the location of

junctions if pseudo-junctions are formdr (-igure 4e). Finally,

any type of piecewise straight-line fits cause a discontinuity at

the junction in the slope of line seqments which are actually

portions of a smoothly curving regicin boundary. This is

important in the extraction of surface occlusion cues (Section

V 4) These problems are discussed ii mi-ne detail in [YORBO].
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Fgure 4. (a) Segmentation of house scene with a typical junction of
line segments marked. Line segments are delimited by a line
termination or a junction of two or more 1 &es. (b) The segments
bounding a region must be restructured by choosing poits of high
curvature as new junctions in order to obtain correct line fits.

(c) Enlargment of junction shown in (a) . (d) The best straight
line fit to segments emanating from a junction can result in thelines not meeting at the junction. (e) When pseudo junctions
are used, actual junction locall ions are moved ind the characteristics

of the segments at the junction are lost.
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In order to avoid some of these problems, piecewise

polynomial functions called splines [AHL67, GOR743 are fit to the

set of line segments bounding each region. Splines of degree 1,

2, and 3 are employed: piecewise lineaTr, piecewise quadratic,

and piecewise cubic splines [YOR79]. Cubic splines in particular

have several nice properties (refer to [igWre 5):

a) they are smooth curves -- the Fuiction as well as its

first two derivatives are continuous in the interval;

b) they are guaranteed to pass throtugh a specified set of

points called knots;

) placement of multiple knots at a ,ingle point allows

discontinuities to remain;

d) given a set of knots, computation of the splinh

coefficients is efficiently accomplished via standard

algorithms.

The strategy currently in effect is to select points uf high

curvature as possible knot locatiuns and then use a knot

collection procedure to pull nearby knots together. Then splines

or all three degrees are fit to the regments. If the piecewise

1.near straight line has a low RMS error, then the segment

between two knots is labelled "straight" and an (R, theta)
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Fiue5 CubLic splines are polynomial functions y f(-,) of degree 3.
They def ine a Smooth curve that passes through any specified set
of points calLed knots: (x.1y. ), 1 1,... ,7 in the figure.
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parametric representation is used to represent the slope and

location (up to co-linearity of the fegments). If the straight

line fit is not ood, then the second degree fit is tosted, and

if necessary the cubic spline fit iF adopted. These points of

high curvature are computed on th e basis of a modified

k-curvature [DAV76], which is the angle that is formed at a given

point by straigh' lines from the given point to the points which

are k away in each direction.

The result of knot selection, knat collection, and first and

third degree splines for one region is shown in Figure 6. The

spline approach has the potentjil to produce smooth

approximations to digital curves and allow a more accurate

analysis for junction classification [YLIRLlO, 2D shape z:n'%lysis,

occlusion cues, and surface hypotheies. Although the fits of

cubic spline curves shown in Figure 7 are reasonable, there is

definitely need for further improvement. The knot selection and

collection process was based onl,: upor, a local view of curvature

a more global view of curvature may produce more appealing

boundary fits.

V. 2. .ona-Term Memoru (LTM) and Short -t'rm Memoru (Sfli

General knowledge about the physical world (or the task

dnmain oF interest) is stored in "long -term memory" (LTM). An

imatie will be "understood" in terms of: thc concepts and relations

found in LTM. This knowledge is hierarchically organized into
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levels which represent a natural abstraction of world knowledge

(Figure 8).

Nodes in LTM represent visual primitives with which the

system can construct an interpretation, while the arcs represent

relations (primarily AND/OR relations) which exist between the

primitives. Inter-level arcs reprefent the paths by which

primitives at one level may be related to primitives at levels

above and below. These arcs represent paths for hypothesis

formation (possible inferences) withiin '*IM; they are used in

various ways by other knowledge sources during the interpretation

process. Section V.6 discusses how the inference net KS overlays

LTM. Figure 9 depicts a representative fragment of the network

and describes the size of the network in terms of the number of

nodes and arcs.

The interpretation of an image it, viewed as a set of

instantiations of the nodes in I'IM. These instantiations

constitute short-term memory (STM) and art- shown on the left side

of Figure 8. This representation of kiiwledge, as well as its

relationship to the inference net, is the- subject of ongoing

research by J. Lowrance, a graduate student in our research

group. Both STM and LTM are implemented ac a layered graph in

GRASPER [LOW78], a graph processing language extension to LISP

which follows the general approach of [I-l19, PRA71].
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The 2D shape o; a region may be an important cue to the

identity of an object, or to attributes of a visible surface

(such as the 3D orientation of the surface). Many simple

relationships between the physiLal world and its 2D image

projection are captured in LTM. For example, the 3D shape of

simple volumes (e.g. cylinders and rectangular solids), as well

as the 2D shapes of 3D surfaces (e.g., the rectangular surface of

a window), are related to standard 2I) shapes (e.g. rectangles,

trapezoids, circles and ellipses). Threpfore, in order to gain

access to paths by which 3D hgpothercs may be formed, symbolic

attributes of shape, where they are relevant, must be associated

with regions.

First, we outline the strategy Fou. labelling geometric

shapes formed by straight lines. Figiore 10 is a portion of LTM

which captures an informal definition oF several shapes in terms

of the straight line segments Po.ming them. The shape

classification is hierarchical; that i - quadrilaterals are a

superclass of both trapezoids and parnallelograms, the latter

being a superclass of rectangles aiid rhombi, etc. The

definitions of shapes, involve increasingly restrictive

constraints as the hierarchy is descended Therefore, if the Pit

for a quadrilateral is not very good, al) bhape types which are a

subclass of quadrilateral need not be examined. In this way a

large amount of computation is avoided.
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A quadrilateral requires four st1ight lines and the

confidence that a region satisfies this condition can be

heuristically specified as the minimum confidence that each of

four segments is a straight line. 'lhe confidence of a straight

line is the RMS error of the best fit to the actual data. Figure

10 outlines the manner in which the computation proceeds and

hopefully is self-explanatory. It should be noted that the

composition of confidences involves a product of confidences in

an attempt to implement a worst-case analysis. One should note,

finallu, that heuristic functions are needed to specify the

confidence of primitive attributes or relationships such as

straight line, parallel line, right anqle, or equal length; it

is expected that any reasonable functJoi will suffice. The

result of fitting geometric shapes to segmented regions is shown

in Table II.

In addition to primitive shapes Pormrd by straight lines,

quadratics are used to detect good fits of ellipses and circles

to the regions [AG172, SH1783. Origiita))y all types of conics

(i.e., the type of curves produced by cutting a right circular

cone with a plane, including ellipse , hyperbola parabola ,

etc.) were fit, but this has been repla(ced by spline fits.
Most regions in our outdoor scenes arc- not classified as any

of the simple shapes mentioned and are labelled symbolically as

'blob'. Nonetheless, important inPormation such as the

parametric fit of the 2D spline anal.is. is carried forward for

later 3D processing.
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Region Shape Probability Aspect Ratio

Rectangle .937 6.33
RC--0047

Trapezoid .96 -

RG-0050 Rectangle .99 6.33

RC-0051 Rectangle .99 6.33

RG-0054 Rectangle .99 6.00

Rectangle .80 7.5

RG-0060
Trapezoid .85

Rectangle .80 6.25

RG-0045
Trapezoid .85

Rectangle .85 10.33

RG-0049

Trapezoid .90

RG-0086 Rectangle .99 3.00

Table II. Summary of 2D shape fits to selected regions of Figure 3.

i u • n m•• n • m
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V. 4. Occlusion

Researchers in image processing have long recognized the

importance of picture junctions as loci of surface information.

When objects in scenes are limited to planar surfaces forming

trihedral vertices, the analysis oF picture junctions can be

efficiently ?xploited. The constraint of surface planarity

ensures that only straight lines will appear in the image and the

trihedral constraint guarantees that there will be a small number

of fairly well-understood vertex types CHUF71,

CLO71,WAL75,TUR743. When scenes conta'in complex curved objects,

the problem becomes more difficult.

The cubic spline fits to the image provide useful occlusion

information at picture junctions. l'lv.ement of knot(s) at the

junction ensures that two line segment,, meeting at a junction,

which are part of a continuous line, will be smoothly fit by the

splines. This is a generalization of thc- "tee" junction in the

polyhedral domain, but does not require assumptions about

straight lines. A simple strategy for determining the degree of

discontinuity (e.g., relative angle) between pairs of line

segments approaching the junction yields occlusion hypotheses at

the junctions. York CYORBO is currently examining the

improvements obtained by a spline approach vs. piecewise linear

fitting on Turner's classification oP the 2D junctions formed by

the meeting of 3D curved surfaces [TUI?74J.
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V. 5. QLtct Hupotheis via S~egtral Attriibutes

For a restricted iUass of objects occurring in outdoor

scenes# attributes of color and texture caii be expected to remain

relatively invariant across a wide ravige oF scenes. The spectral

attribute KS matches region attributes to stored attributes of

several objects (sky, *ree, bush, grass, a ,d road) and returns a

measure of the degree of match, ranging Prom -100 (no match) to

+100 (excellent match). The stored att.ibutes were obtained by

measuring 60 features across samp)es oP each object extracted

from a data base of 25 images. A piecewise linear decision

function which reflects the expected variability of each feature

of an object is then formed. the matching process extracts an

identical set of features frow the regioit (or union of regions)

to be identified, and uses the dec'ision fPiiction to generate a

degree of match for each object. Ihis research is part of the

Ph.D dissertation of T. Williams; more detail appears in

[HAN78b, WIL8O].

The attribute matcher can only to used to hypothesize the

presence of certain "target" objerts based upon the expected

invariance of their color and texture :_ttributes. There are many

objects such as cars, shirts, and most other man-made objects

which vary in their spectral characteristics. This KS, however,

will return a confidence value for any region, regardless of

whether the region represents a target object or not. Therefore,

we require mechanisms for filtering these hypotheses.
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Figure 11 illustrates the results obtained by applying the

spectral attribute matcher KS to the 21 largest regions of our

example. Of the 21 regions, 14 were target regions (3, 8, 10,

30, 20, 79, 15, 37, 82, 96, 90, 83, 110, and 93) and 7 were

non-target regions (14, 58, 41, 56, 35, 70, and 21). Of the 14

targets, 8 were correctly identified on the basis of a maximum

confidence decision. If bush and trep are collapsed into a

single object (which is not unreasonable given the similarity of

spectral attributes), then 11 of the 14 are correctly identified.

Of the remaining three target errors, the correct hypotheses had

the second highest confidence in two cases (regions 15 and 96);

region 8 represents a mixture of sky and small tree limbs and the

correct hypothesis is debatable.

Of the 7 non-target regions, 5 oP the regions (58, 41, 56,

35s and 70) represent portions of the white house wall and all

were hypothesized as sky. In the absence of any additional

information, such hypotheses are reasonable and cannot be

eliminated. The remaining two regions are both roof (regions 14

and 21) and both were hypothesized as grass, probably due to

similarity of values for several crude texture measures. Both of

these hypotheses, and three of the previous five, can be filtered

if the location of the horizon is known and the ground is assumed

to be flat. Regions 14 and 21 cannot be grass and be located

above the horizon, while regions 58, bi6, aud 70 are either below

or straddle the horizon and hence cannot be sky. This will be

discussed again in the "horizon" KS (ScLtion V.9).
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Confidence Measure

Area (maximumconfidenceso t Correct HypothesesRegiond) Identity identity I I Coments Fi¥ltered
Reagion cic Hypoythesis? Acua (Bush/Treeilrd

- Pixelsl jof (max. conf.) (visual) Hpothesis b e by Horizonpictur 1 9 one object) yH Io

14 3101 I 18.9 -10 32 -55 -17 -16 Grass House Roof No No above assumed horizon no hyp.

3 1939 I 11.8 -62 -48 41 74 -84 Sky Sky Yes Yes Yes

8 971 5.9 -20 - 6 31 47 -46 Sky Tree ? mixture: treewihout ?
- IFeave ....

10 793 5.9 -1 -40 -88 -53 46 Tree Tree Yes Yes Yes

- - '" white house wall In sun-

58 606 j 3.7 -52 -41 -49 20 -21 Sky House Wall No No light; region straddles no hyp.
assumed horizon

.. white house wall eaves, &
41 560 I 3.4 - 8 -23 -70 -38 76 Tree House Wall No No gutter in shadow matches Ho
- - tree onbrightnesstexture

30 518 I 3.2 -54 -41 -53 -41 14 Tree Tree Yes Yes Yes

56 486 3.0 -60 -51 -62 23 -23 Sky House Wall No No white house wall; region no hyp.

I- straddles assumed horizon

20 427 I 2.6 10 37 -88 -50 54 Tree Tree Yes Yes Yes

35 410 1 2.5 - 2 13 -61 32 -16 Sky House Wall No No white hous wllwth No- shadow of tree

___________ ~ - -- -- -contidonce for bushilu Ye79 373 I 2.3 45 0 -92 -71 46 Tree Bush N4 Yes almostasearg has tree Yes

--- - - -

70 354 2.2 - 2 7 -61 29 -25 Sky House Wall No No white housewall; part of ?
region above horizon

15 330 I 2.2 -27 20 -56 -32 2 Grass Tree No No region above horizon; Yes
tree next most

---- Tregion above horizon;

21 310 I 1.9 - 8 40 31 -35 -16 Grass Roof No No likely knocks out road no hyp.
- .... .. also

37 308 I 1.9 -33 -30 -92 -53 44 Tree Tree Yes Yes Yes

II

82 238 1.5 2 0 -771-531- 2, Bush Bush Yes Yes Yes
- I ________ ... .. .

96 217 I1.3 4 6 -53 -53 -10 Grass Bush No No bush next most likely No

90 202 I 1.2 29 9 -85 -71 0 Bush Bush Yes Yes Ye

83 198 I 1.2 39 0 -94 -71 44 Tree Bush No Yes bush isxt most likely Yea

110 156 1.2 -48 32 25 -35 -46 Grass Grass Yes Yes Yes

93 196 1.2 29-20 -8974 35 Tree Bush No Yes bush next most likely Ye3

Figure 11. Results obtained by applying the spectral attribute matcher KS
to the 21 largest regions (ordered by decreasing size) of Figure 3.
The results obtained by filtering the hypotheses by the horizon K$
(see Section V.11) are also shown; if there are no positive
confidences after filtering, no hypothesis is generated.

I lm l m m l ll
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The statistics on the remaining 93 regions are approximately

the same, although if the size of the region falls below a

minimum size, reliable texture measures cavinot be extracted and

performance falls off. A number oF the regions have negative

confidence values for all target objects and no hypotheses xre

generated for these regions.

V. 6. Ifl j fjrgnce &A in Lqng T), AilL

The representation of declarative inPormation Js a layered#

hierarchical graph structure in which nodes represent visual

artities and arcs represent the relationships between these

entities. By associating probabilities with nodes and

conditional probabilities with arcf., arn "inference network"

rDUD76, KON783 is defined. The a.cs and probabilities define

weighted paths by which implications oP local hypotheses may be

propagated upward and downward through the layered network. Any

hypothesis generated by any knowledte Source which results in a

change in the a-priori probability oP a node can then be used to

generate changes in likelihoods at other nodes via these paths.

Moreover, entire partial interpretaticnrs may be used to generate

hypotheses about likely identities of uti.xplained portions of the

image. The presence of a window ;:;,d roof, for example, would

strongly imuly the presence of a house ;,nd consequently the house

scene schema.

The inference net of the Prospector system [DUD78], as

originally formulated, is designed to propagate information in
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one direction only* from low-level "evidence" nodes towards high

level 'goal" nodes. The method by which information is

propagated is developed from a Bayesian probability formulation

of the joint occurrence of the visua) entities in the long term

memory network. Prospector only employs conditional probability

distributions between pairs of nodes (i.e., governed by joint

probability distributions of two nodes at a time). In some

situations, however, it is desirable (or necessary) to define

joint and conditional distributions across n nodes in order to

capture higher level dependencies. In any case there are serious

theoretical issues inherent in the use of inference nets, such as

consistency or loops of inferences which relates to convergence

problems in relaxation labelling. These will not be discussed

here, but related issues are discussed in LHANSOa, LOW80).

Table III is a summary of the way apriori probabilities of

nodes higher in the network change at a result of updating the

likelihoods of lower nodes as shown and then propagating upward.

V. 7. MD hj jog Reoresntat ion

There are several important issues involved in the

specification of the 3D shape of an object. The more important

of these include the choice and represenitation of the shape

primitives, the choice of a coordinate system within which the

relationships between primitives can be described, and the ease

with which features useful for recognitiot| and/or matching can be

extracted EMAR77, AG172, AG176, NEV',, NEV77, BAD79). These
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Table III. Sample results from the inference net KS. The results shown

are-inferences upward from one level to the next, assuming the
instantiations and associated probabilities as shown. The instantia-
tion(s) represent evidence via some KS for updating the probability
of some node(s). The prior and posterior probabilities of nodes
higher in the network are shown. The effect of propagating
different pieces of evidence from below are labelled with letters
after the probability. Actual instantiation of hypotheses on
the image of Figure 3 are given in Section VI.8.
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issues are being investigated by York in his Ph.D. thesis EYORSO]

by applying and further developing techniques from the

computer-aided design community EC0067, COU74, GOR74].

The most popular 3D shape representation -- generalized

cylindttrs [NEV773 -- involves formation of a 3D volume developed

by swfteing a given planar cross section down an axis (Figure

12a). Thus, an object centered coordinate system is employed and

an assembly of subparts is described by relating the local axes

to each other [MAR77].

Our efforts are directed at making the relationships between

subparts accessible, the relationship of surfaces to volumes more

explicit, and the development of a representation for arbitrary

curvature of surfaces. The representation (Figure 12b) employs

Coons surface patches) whose four sides are delimited by cubic

splines [C0074]. The surface patch (Figure 12c) is formed by

using an interpolation, or "blending" utction, from the pair of

opposite sides of the surface patch. The blending function

itself is also a cubic splineJ it allows a smooth transition

between adjacent patches, both those defining a single volume, as

well as adjacent volumes, as ir a car Ferider and car body. A

"quilted solid" is defined by six surface patches related to a

volume-centered coordinate system (Figure 12d). Figure 12(e)-(g)

depict surface patches from several different points of view.

Many kinds of information cap be stored with or derived from a

quilted solid (Figure 12h).
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00 10

(a) (b)

6

01~ 11

Ow A w Ow B w

0 001uO uO

(c) (d)

Figure 12. The three-dimensional representation of shape. Much of
the representation is based upon cubic splines, Section V.1.
(a) The generalized cylinder representation. (b) A Coon's surface
patch P(u.w), where u and w are parameterized on the interval
[0,11, em loys four B-spli e P(Ow), p(l,,), ptn)1 P(U i)
to delimiL the surface patch boundary; blending functions which
are also B-splines interpolate between opposite sides of the
surface patch. (c) Two adjacent surface patche A and B can be
smoothly joined at a common boundary if the blending functions
are constrained properly. (d) Six surface patches can define
the shape of a volume around an axis which is used to relate the
spatial orientations of such volumes.

2
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Fiue Z e ~ni raePLI al4W)t ~ JL (f) lIaro

upon itself Lo produce a volume. In this figure, one boundary
reduces to a point. (f) Telephone handle using one surface
patch. (g) Telephone handle using three surface patches showing
SLIO00th join between patches. (hi) Screwdriver formed from twoH oatches.
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A system for separately defining arbitrary surface patches,

combining patches into volumes, combining volumes into objects,

building specific 3D schemas, and rotating schemas subject to the

assumption of a given point of view is partially developed.

However, these components have not yet been integrated into our

system.

V.S. 2Q Sjhmas

There is a great deal of expected structure in our visual

environment and it seems evident that such expectations are

important in processing visual informa' ion. One of the functions

of the 3D schema is the organization oP subsets of information in

LTM into higher order complexes of stereotypical situations in

such a way that the spatial relationships between objects,

volumes, and surfaces which might occupy or define that space are

made explicit. The 3D schema would allow rotation and

translation of the prototypical scene so that its appearance from

any point of view can be generated. lhuf, the processing of a 3D

schema allows the generation of potentially relevant 2D schemas.

The results given in Section V) demonstrate top-down

interpretation of an image. In order to do this it was assumed

that a specific 3D schema was available, that it could be rotated

given an assumed point of view, projected onto a 2D image plane,

and then hidden lines removed. While those 3D facilities were
not ... i'-a , k

.ot. then, and 2D schema inPormation was supplied

directly, they are now available.
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Our current version df specific 31) and 2D schema have for

each schema region a centroid of the expected central location

and a radius representing the decreasing likelihood that the

schema region appears at that location. "Ihus, one can think of a

spherical or circular probability cloud dentoting expected spatial

position. This crude representation of location allows selection

of regions in the image for matching against schema objects;

furthermore, alternative region selections can be ordered by

degree of location match. Figure 13 depicts wire frame and

surface representations of a model of the house image. The 3D

schema we have described attempts to capture approximate relative

spatial information of the entities appearing in Figure 13.

There are still interesting problvnit. remaining that are

associated with the generation of 2D schema from 3D schema. For

example, the likelihood that a 2D schema region is visible will

be related to the likelihood that another schema region will

occlude it. Many issues related to the generation of specific 2D

schema from specific 3D schema are under examination.

V. 9. Persoective

The perspective knowledge source coi|centrates on the ways in

which the general relationshipi, governing perspective

transformations can be used to extract or explain information

concerning surface orientation, di-taice, and size [DUD73,

HAR78]. A region (or the union of a group of regions) represents

the projection of a 3D surface onto tht, 2D viewing plane TheR
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WINi

I __

MAMA
j ---- s--a-- -,

I

Fi.gure 13. Wire frame and surface representations of a model of thehouse image seen from two points of view. The current 3D housescene schema is actually an abstract representation of the approximaterelative spatial locations of the entities in these images. Thecomponents (volumes, surfaces, straight line segments) are actuallyrepresented by a position in space and a radius associated with adecreasing likelihood of the component appearing at that location.
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problem then is to recover some of the 3D attributes of that

surface from the segmented image. Figure 14 is a simple sketch

depicting the relationship of the distanc6 and height in the

physical world and their associated parameters in the image.

The current version of the perspective KS focusses on the

relationship between the following variables:

a) elevation - vertical distance above the ground plane.

b) height - vertical distance front visible bottom edge to

visible top edge of surface,

c) range - horizontal distance Prom viewing location to a

distinguished point on the surPacre,

and d) width - horizontal distance Prom the visible left edge

to the visible right edge of the surface.

The interrelationship of these variables depends on the

orientation of the surface in three-space. For simplicity, we

assume the orientation is either vertircl (i.e., perpendicular to

the ground plane, such as a tree) oi horizontal (i. e., in the

ground plane, such as a road). While these assumptions may appear

to be unnecessarily restrictive, they are sufficient to cover

many surfaces of interest.
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Vh

dw

h I

Figre_ 4.Perpeciv ground plane, vanishing points, projective

geometry.
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The four variables described above are interrelated. Given

the assumption of ground planarity and a camera model (angle of

inclination to ground plane, focal length) and height above

ground plane$, knowledge of any one implies knowledge of the

remaining three, although the form of the relationship depends on

"" whether the orientation of the surface is assumed vertical or

horizontal. We are continuing to explore ways to use perspective

under weaker assumptions in our current retearch.

In general, there are usually several unknown quantities to

be determined and depending on the assumptions made one can solve

for different variables. Applying the perspective KS to selected

regions of Figure 3, it is easily determined that the range of

region 79, for example, is about 37 meters and its height is 1.61

meters; this required assumptions of ground planarity* and that

the surface projected as region 79 is perpendicular and attached

(i.e., zero elevation) to the grouiid plane. More extensive

results from the perspective KS, and the use of these results for

the development of a 3D spatial plan aTe presented in Section VI.

V. 10. Futhe. Povolopment of th PeTha titt .v_ KS

In Figure 15 there are several sources of information in the

1. images that relate to the 2D projection of 3D volumes and

surfaces. Figure 15(a) shows a series of identical objects

diminishing in size. If it is possible to generate the

hypothesis that the objects are of identical size and orientation

a situation that is not uncommon in various geometrically
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regular aspects of our man-made wor)d -- then the tops and

bottoms of the telephone poles provide lines of convergence to

vanishing points on the horizon line. "The diminishing size of

the telephone poles is a particular example of a feature

gradient, known to be important in tie perception of space

[GIB50.

The use of the perspective equations for size and distance

demands knowledge of the tilt angle of the camera relative to the

general plane. This information is provided by the position of

the horizon in the image when the ground is planar. Figure 15(b)

depicts an example where the horizon line ran be inferred when in

fact it is not visible in the image nor are there convergent

lines which could be reliably used. In the physical environment

corresponding to Figure 15(b), the pliza provides a flat surface

which is defined in the image by the hottom of the feet of the

figures. The horizon line lies in this plane. If the relative

anille of the camera to an infinitely planar ground surface is 0,

then the horizon is in the center of the image, and in general

tilt is directly computed from the distance of the horizon to the

cen-ber of the image. The height and distance of the various

figures may be determined directly from the distance of their

feet from the bottom of the 2D image. Yet a third plane is

roughly described by a least rms error fit of the points

corresponding to the eyes of the figuret; if the camera is at a

similar height to the eyes (rot an unreasonable assumption), then

this plane is constrained to go through the horizon as well.
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L. This implies that the eyes of the figures, or more roughly the

tops of their heads, must lie at approximately the same height in

the image# as is evident in Figure 15h.

There are many other interesting situations which deserve

investigation, such as:

a) deriving the orientation for platiar surfaces that are at

some general orientation, not horizontal or perpendicular

to the ground planei

b) assumptions concerning lines which are near parallel or

perpendicular and their implications about the physical

world;

c) deriving distance to objects and camera tilt angle from

assumed or known phusical sizes of the oLjects

corresponding to regions in the image.

Continuing research on the perspective KS will focus on the

information required for the construction of a spatial plan of

the 3D scene, the development of a collection of mini-strategies

for using this information, the determination of the conditions

I under which these strategies may be activated, and on methods for

extracting this information from the inuqg data.

'V. 11. LHorizon Schema- MJ Horizon Fjlter Ki

It should be clear that the ePIPects of perspective and

ddistance on the projection of sur~ac 's in the image are

I.

L . mmmJ
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determined by the observers position,, the camera model (of

height, pan# tilt, and focal length), ovd the orientation of the

ground plant. These factors also determine the position of the

horizon in the image, if it is visible. The horizon schema is

perhaps the simplest and most general of the schemas present in

the system. The function of the horiyon schema is to define the

relationship between sky, ground, and hovizon a aid to provide

the global coordinate system for placing objects and schemas in

space (Figure 16).

The horizon schema also provides the basis for a filtering

KS applied to the hypotheses generated by other knowledge

sources. Since the spectral attribute KS, for example, has no

notion of the spatial location of its target objects, some of its

hypotheses may be inconsistent with the location of the horizon

in the image. By collapsing the more obvious spatial constraints

into a knowledge source associated with the horizon schema many

erroneous hypotheses can oe eliminated. I-or examples in Section

V.5, Figure 11, region 58 was hypothesized to be sky. While this

is a reasonable hypothesis based solely on spectral attributes

(white walls tend to "inherit" the color characteristics of the

ambient illumination or reflected illuninant characteristics from

nearby objects), "sky" regions cannot exist below the horizon and
the sky hypothesis can be eliminated. Sinice no other reasonable

hypothesis exists, no hypothesis for this region tan be generated

by the spectral attribute matcher, For region 15, the hypothesis

"9rass" is eliminated since the regiot is above the horizon; the
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next most likely hypothesis (tree) 'cannot be eliminated and

becomes the final hypothesis.

The results from the horizon filtvr- KS applied to the output

of the spectral attribute matcher KS are shown in Figure 11.

Note that the assumption of ground planarity is built into the

current version of the horizon schema, and that the real world in

many instances presents us with more complex situations.

V. 12. Oj-jct g.in KS

The object size KS is responsible for generating object

hypotheses based on the size of a region (or collection of

regions) and the results of the perspective KS. For example,

once a region is known (or assumed) to represent the projection

of a vertical surface: the perspectvive KS can compute the

distance to the surface in the physical world and its physical

height and width. The size KS uses this data to return a list of

object hypoheses ordered by the confidence that the physical

object could be the given size.

The size KS makes use of expected sizes of objects that are

stored in LTM. Both major and miiior axes and their expected

orientation are used where possible. -igure 17(a) shows examples

of the ranges of sizes for selected object classes in LTM. A

piecewise linear approximation to the size probability density

function is formed from these ranges as shown in Figure 17(b).

Computation using only the vertical axis (Por clarity) of several

objects is shown ito Figure 17(c); iii this figure, the size



Horizontal Axis Vertical Axis
i ~Object ...

Smallest Smallest Largest Largest Smallest Smallest Largest Largest
Possible Probable Probable Possible Possible Probable Probable Possible

Building- .6 .84 1.20 1.40 1.40 2.0 2.40 3.40
A V Door

Building- .25 .30 .60 1.0 .5 .71 2.0 2.80
Shutter

Building- 3.40 4.80 11.30 32.0 1.70 2.40 16.0 27.0
Side

Building- .30 .60 1.20 2.40 .25 .35 2.40 3.40
Window

Bush .60 .84 1.70 4.80 .60 1.0 2.0 2.80

Car 2.0 3.40 4.80 6.70 .60 1.0 1.40 2.0

House 5.70 9.50 16.0 27.0 3.40 4.80 9.50 13.50

Human .30 .42 .60 .84 1.0 1.40 2.0 2.40

Roof 2.0 4.80 16.0 27.0 2.0 2.40 4.80 6.70

Tree 1,70 3.40 6.70 13.50 • 2.0 3.40 13.50 32.0

Tree 1.70 3.40 6.70 13.50 .71 1.0 9.50 19.0
Crown

Tree .25 .25 .60 1.70 .71 1.0 5.70 23.0

Utility .25 .30 .42 .60 2.40 3.40 9.50 13.50
Pole

(a)

f(x)

Area -

N.__ horizontal or
smallest smallest largest largest vertical size
possible probable probable possible

(b)

Figure 17. Object Size KS. (a) Typical size ranges for horizontal and
vertical axes of some objects in LTM; all sizes are given in meters.

(b) Approximation to a probability density function formed from the

values in LTM.
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coordinate axis is shown in both metcri. and the logarithm of

meters.

1. The perspective KS returns a computed size and the range of

Sthe size; the default rang e is +57.. B ased on this window of

size values, a confidence value is compute~d for each object in

iLTM from the ensemble of piecewit.e approximations. If this

window falls outside the size ra!,qt. Por the object, the

confidence value is defined to be -100. Objects for which the

window overlaps the expected range pr.oduce: positive confidence

values. This value is determined fai- each object by integrating

the area under the curve (for that object) within the error

window, and then normalizing by the largest value produced for

any object (times 100 so that the largt,tt will have a confidence

value of 100).

Applying the size KS to RG-50 (a uiiidow shutter) of Figure 3

results in the hipotheses: tree t.iok with confidence 1thP

shutter with confidence 35, and all oth-r . are negative. More

extensive results are provided in Sectoc VI..

VI. RESULTg OF INTERPRETTO WT N-t_ J5

VI.I. ;ntrodution

One of the purposes of 3D schiao:bs is to generate the

appearance of prototype scenes t rhm o ty point o view. For

example twd ad he oraima o a road ie can be rotated nd

projected to produce to ige o( a 'o d scene as it would be

reut nte hptee: teet+ikwt ofdne10
shte ihcnfdn,3.adal t i! rengtv. Mr
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expected to appear to an observer lookirip down the road. A

particular projection of a 3D scherna is referred to as a 2D

schema and will be very useful in directing top-down analysis of

the image. It is best thought cP af. a plan (a set of

constraints) for interpretation of thc- image.

A 2D schema of a specific house scene viewed from a front

diagonal perspective is implied by the il)u~tration in Figure 18.

This 2D schema is not a projection of a 9pneral house scene, but

rather of a particular house scent-. "he general house schema

would need to specify the expected variahility of the general

house scene.

The current representation of the P) schema involves a set

of information for each region including location of centroid,

area, 2D symbolic shapa with an aspect ratio of major to n.inor

axis, color and texture features, ]oration and properties of

boundaries, object identity, 3D surface orientation and 3D size.

To perform these experiments the ') schema was generated

manually, and current work will make it potsible to drive a 3D

schema representation and automaticA)l. form the projection,

estimate likelihood of occluding schemit surfaces, and fill out

the required attributes from the LTM knowledge base.

It should be clearly understood big tiow that the current

spatial representation of a 2D schema is iiot a direct copy of the

model drawn in Figure 18(b,c), but jiistead approximates the

location of this information.



Ob.TF fiU 44 CCHu-0& t5i

b, v

j o .P-T CFS- 0--o¢€' go , Z /--,c-1.~s o-s ",>,si c-. , -

133 oP-wi4-;,

OrW00-. 2.A -

Osle--.ttru- cq'Z.y car'.t~g ' goof:gg , i) ""P (R'-r " 3 ) , [l.UUC
(a)

Osp-'e

I Ow t i " ,1

OSP-14ov-t- or.-

deP b I) ,(cy11 A*

Li IL

*'OVAu)i. OUTE CT f)w~r

(b)

F ie 8. 2D kchema for a specific house scene. (a) lierarchical stUcture,

;of schema components. (b) the schema regions represented by-the drk nodes

in the hierarchy. (c) Schema regions associated with tip nodes in the,

hierarchy; this is the schenia used in ally the experiments of Section VI.

The squiggly boundaries in the schema are for aesthetic purposes. 'Currenitly

the positioitof schema regions is dqfine4' by parameters qf centroid and Area.

Schema regiinA, also may have additional parameters ot color and symbolic

shape, and any subset of these four parameters moy be, used by a matching

function applied to image regions. Straight lines (without squiggles)

represent boundaries whose shape and rough position is known, 
znd can

also be used to direct matches to hearby straight litne segments in the

image.

, '. . .. . -. . -. --. .. .
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The position of a 2D schema reg ion is defined by two

parameters, the position of its ceutroid and its area. The

squiggly boundaries in the 2D schema or I-jiure 18 are for display

purposes. Actually, the positions oF the schema regions are not

known except to the degree that constraints are implied when

there is a distinctive shape, such as rectangle with a particular

aspect ratio. On the other hand, there are sometimes boundaries

with known characteristics (e.g, long ond straight) appearing in

expected positions such as those bounding the roof in our house

scene schema. Lines whose shape or'r known are drawn without

squiggles where they are roughly expected to appear in the image.

Top-down control of the KSs in the interpretation o0 an

image is relevant in the case where expectations about a given

Ycene are available. The experimevits in this section are

intended to depict the case where the system is attempting to

interpret a known scene via a specific el) schema, i.e., from a

known point of view (Stage I from Section 11X.4). We also assume

that the camera model (focal length cP ),ns, tilt angle, pan

angle, and height above ground) is kviown. Results will be

presented of the control by 2D schenuis, of the 2D shape KS

spectral attribute KS, fits of straight line segments, the

perspective KS, and the size KS.

The 2D schema KS directs matching o schema regions to image

regions and some schema line segments to image line segments.

The matching process employs a weightud evaluation function on

features of symbolic 2D shape, size, ro)v., and position between

Im m m m m m
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regions in the image and in the scheme. We will not go over the

details of the heuristic match function here, although we note

that any non-empty subset of the features can be used for

matching, Note that it is necessary. iis general* to expand or

contract the schema in order to rorrelate schema size with image

size. This is a function of distance and camera parameters and

would have to be part of schema processing if it is to be robust

in its application.

Matches can also be defined to operate between a schema

region and groupings of several image regions, or a schema line

segment to a group of image line segments, but then a search is

necessary to discover the best groupingps. The search for good

matches can be directed by a variety oP strategies. We will

present simple results of a few.

VI. 2. Semanticall Pajti.L~t Merain yie ID Sch.bMa

The first experiment will demonstrate the matching color and

texture attributes in order to improve a eragmented segmentation.

It involves the interaction of the spectral attribute KS and the

2D schema in an attempt to merge miiyj adjacent regions whose

object identities are the same. The str'ategy attached to the

specific 2D schema for applying KSs to perform semantic merging

. is outlined in Figure 19 It fir.t iinvolves calls to the

spectral attribute matcher to get a lirt of object types which it

can match. The 2D schema contains information on the areas of

the image in which these objects (tree, bush, sky, and grass) are
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2D Schema

select schema regions

select 'consistent

hypotheses and
merge regions

Which schema-
objects does filter
SA matcher select candidate get impossible
have tis image/ regions hypotheses hypotheses
statistics

about 
4

TREE

2D Schema Image

Figure 19. Semantic merging strategy. The 2D schema determines from
the spectral attribute matcher which schema objects it can classify,
then selects schema regions which are the expected locat2 one of
those objects, then determines all image regions in those vicinities,
checks which objects are implied by those attributes, filters
object categories which are inconsistent with the horizon model,
and then merges regions with identical labels that are consistent
with the schema.
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expected to appear. Thus, it distinguishes the areas expected to

be target objects from the areas of tooti -target objects. The 2D

schema then accesses the region segmentation to select candidate

image regions for matching. Each schema region which is expected

to contain one of the four types of objects above will be used to

direct semantic merging via the attribute match KS. In these

areas adjacent regions wili be merged if their identities are

verified by the attribute KS to be coiisistent with the scheme.

Thus, the attribute KS can be viewed as verifying the 2D schema

plan.

Figure 20 shows that semantic merging allows most of the

fragmentation in the tree to be mer'pud, and separate grass and

bush regions to be linked as well, The image is greatly cleaned

up and more representative of the semantics of the scene., The

results might be further improved by applying the horizon KS to

filter the object hypotheses that ire inconsistent with the

approximate location of the horizon (whjrh has been established

via a camera model to be below the center of the image).

VI. 3. traight Lint Seament AgaLL1.A yip 22 cdhigMl

Let us use the long straight liiiets in our 2D schema to

search the image for good candidate matches (refer to Figure 21).

The search is constrained bJ placing a rectangular mask around

the selected schema edge (Figure 21b)., All lines whose midpoint

is inside the mask, and whose slope i t. within a specified

tolerance of the slope of the srhcrnm line are selected as
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possible matches. The next step is to merge all co-linear

segments within the mask into new segments, and then match all

the resulting line segments to the schema line. The match is

based upon attributes of slope, length, distance between centers,

and RMS error, with a best (merged) match for each schema

straight line segment. Results for two schema edges -- the right

side and lower side of the roof -- arc shown in Figure 21(c).

The merging of image line segments 34 arid 94 clearly produces the

best fit to the schema straight line on the right side of the

roof and this line segment is completed in Figure 21(d). The

lower boundary of the roof also produces. a clear match.

IP the results of the line segmeitt cnstruction are fed back

to the shape KS, region 14 is now idetitifled as a parallelogram

with 65% confidence. Note that we expect this to improve

further, when the lower straight line oP the roof is extended to

meet the other straight lines and cut bPf the region leaks on

both sides of the roof. Figure 21(e) shows straight line fits

with minimum RMS error. It is estimated that the confidence can

be increased to over 90%.

VI.. S aolA L gQ. S Matches yip gg Sghtmaji

*Certain regions in the schema and the image have symbolic

attributes of simple geometric types such as rectangle,

trapeioid, ellipse, etc. The shape attributes of schema regions,

where they are relevant, are pre-defiiied (or else will be
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igr.21. Results from schema-directed straight line segment analysis.
(a) High-level schema used to direct merging of segments. (b) Original 7
segmentation showing mask used to locate candidate line segments.
(c) The candidates for matching against schema segments SL-3, SL-4,

V, SL-5 are SG-34, SG-94, SG-134, SC-224, as found in the masked area
of (c). The results of matching combinations of these segments
are shown in the left-most column. Clearly, segments SG-34 and
SG-94 form the closest match. (d) Insertion of roof boundary
segment as a result of schema ntch of ISL-3, 4 and 5 co segments

L SC-34 and 94. (e) If straight line fits are used to improve the roof
boundary, the confidence of a paral'.elogram can be increased sharply.
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generated during 3D schema projection). The snape attributes of

image regions can be determined by the 'WD shape KS.

Let us examine the strategies depicted in Figure 22 for 2D

shape matching. The schema requires access to the results of the

2D shape KS and the list of schema regions with distinctive

geometrical shape. The shape matching function then can use

shape and position to determine a degrec, oP fit. There are three

types of matching capabilities of schema and image regions using

any subset ef the four features:

a) location of centroid,

b) symbolic shape,

c) iiitensity/color, and

d) area.

The matching function can be applied:

a) directly between a schema region and an image region,

b) between a schema region ara a group of adjacent image

regions, and

c) between a template (possibly derived from a previous

match of image regions) and groups of image regions.

Let us now examine the results summari~ed in Figure 23.

First, consider an attempted match -- without the use of

postion information -- of all schema regions and image regions

which have distinctive geometric shapes. Ihis will show that the

2D schema can be ribust without an exact spatial plan for thi 2D

image. The 2D shape KS was run oit al) regions within the

expected house area, and those image regions which have a high
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2D Schema

schema regions G1tOUPING "
with distinctive FUNCTION MATCH
shape position

~color

area

2D 2D MOVING
SHAPE SHAPE MATCH

(a)

LIIL

(b) (c)

Figure 22. 2D shape matching. The 2D schema calls the 2D shape KS to
extract regions with primitive geometrical shapes and then matches
them with schema regions by symbolic s ,ape label and position.
The match can be applied to individual or groups of image regions.
Additionally, features of color and expected area can be used.
Image regions which are matched can be used as a template to be
moved over the Image.
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Figure 23. Shape matching via 2D schema.
Results of matching house shutters based upon shape matches and

21) shape KS. (a) Portion of the original segmentation. (b) Portion of
the 2D schema. (c) Of the 5 image regions with high confidence ofI rectangle or trapezoid, two regions, 45 and 50, are matched against
schema regions with roughly sItmilar shapes. The match is based upon
size, shape, and color and the best five matches are shown. Note that
low evaluation is best. The overall match is shown on the left while
:.he match factors of the features in the order given above are shown
to the right. (d) The image regions found to match with shutters in
the schema. Note that the feature of position (neither schema nor
region) was not employed.
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confidence of a primitive shape type can be further processed.

Each of these regions is used to match against schema regions

with similar shape based on attribut e of sixe shape/aspect

ratio# and color. The result of matching regions 45 and 50 with

the best five schema regions is tabulated in Figure 23(c). They

are found to match reasonably woil uith the various shutter

regions in the schema and poorly with other schema regions. The

left shutter has fragmented in the original segmentation and

region 43 is closer to a trapezoid than a rectangle.

Consequently# it has a poorer match with rectangular shutters

than region 50. It should be noted that the evaluation function

is scaled into 0 (perfect matche) to 1000 (no match)s this

evaluation function has not yet been made consistent with the

form of other KS outputs.

The second step shows the improvements obtained by the

aldition of positional information to hetter form correspondences

between schema shutter regions and imope regions. There is a

good match for five of the six shutters in the front and one of

the two on the left (Figure 23cd). Note that the left-most

shutter has not been found and only a part of the next one has

been found because of region fragmentatjoi.

Figure 24 demonstrates the grouping copabilities of the 2D

schema by focussing on the left two large shutters in the image.

The centroid of the schema region is ut,(i to select candidate

regions for grouping and the match Putction (based upon all the

features) is used to select the subset which matches best. The
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Figure 24. Scheraa-dire. Led grouping of image regions with simple and
distinct geometric shape. (a) Portion of original segmentation
excracted from Figure 3 showing the fragmentation of the left
two shutters. (b) Grouped regions found by 21) schema. The right-
most shutter of Lite left pair was found using the centroid of the
schema region to select candiiate regions for grouping. (c) Results
from match function when a m-Ask formed from the right shutter of
the pair is moved to the lcft and matched against groupings of
candidate regions on the basis of color and size. Regions 72, 64,
59, 52, and 44 match best. The merged collection is shown in (b).
The confidence that the second region from the left is a rectangle
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right shutter of the pair is extracted by this technique, but due

to the severe fragmentation of the left shutter this oc hnique

was not employed. The shutter on the far left was found by

moving a templates of the size of the right shutter towards the

left and grouping regions on color and size. The best match is

then selected. The 20 shape KS is then applied to determine the

rectangular fit on the left two shutters, producing confidences

of 24% and 94%, respectively. It is diPficult to interpret the

24% value at this point since there has. not yet been any tuning

of the performance curves of the shape conPidence measure; we do

not know, as yet, how fast the match values decrease relative to

a 'good' match.

VI1. 5. CoMbingt4,on o~f M eut

The result of integrating the hypotheses of the attribute

KS, line aegment matches, and the 2D shipe KS yields the results

in Figure 25. Note that many of the r'egionis in the image are

labelled with the proper object identitq. Figure 25(cod) was

proeuced by a clean-up process of merging unlabelled adjacent

regions within the house schema region and the remaining

background area.

VI. 6. Eomtj1 gt i tS-aial lPlan Usj1 Perspective Information

The proper use of the perspective KS requires that a set of

assumptions be generated regarding the orientation of surfaces.
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(a) (b)

(c) (d)

Fig!ire 25. Combination of schema-directed KS results. (a) Original
segmentation. (b) Combined results of 2D schema with attribute KS,
line segment matching, and region shape KS. (c) All regions without
semantic labels are merged u-4er guidance of 2D schema (i.e.,
unlabelled house regions are kept separate from unlabelled background
regions. (d) Same as c, but labels are provided on diagram:

tree roof

® sky shutter

Qg) bush @ unlabelled house

grass @ unlabelled background
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In practice they would be determined via the specific 3D schema

and other information from long-term memory, but in this case the

set of assumptions necessary to drive the perspective KS are

obtained directly from the 2D schema. Thus, knowledge that a

particular region is bush, and that bushes are usually

perpendicular and attached to the g'ound plane. is available to

the 2D schema if it has been generated From a 3D schema. These

critical assumptions allow the perspective KS to place that

region (bush) in the 3D world model.

Let us consider the strategy for the computation of the

distance and size of an unoccluded object which is perpendicular

to and touches the ground plant; this strategy will be applied

to computing the range and height of the bushes. The strategy by

which the 2D schema controls the application of processes is

outlined in Figure 26. The spectral attribute matcher KS can be

used to validate the regions presumed to be bush and grass.

Their common boundary implies that it is unlikely that th, bottom

of the bush is occluded. Next the perspective KS is called to

determine the distance and size of the but.h. In this example the

range of the bushes is based upon tuto assumptions: vertical

orientation and the elevation of the bottom of the bushes is 0.

Then, the identity of regions 102 110, 11P, and 113 as grass

implies that there is no occlusion of these bush regions. Hence,

the image coordinates of the region ran be translated into a

rane in the physical world. Once the range is computed, then

the image size -- region height and width allows the physical
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Li 2D Schema

L. (..., schema location, ... )
BUSH

( I.
' GRASS

Common Distance Verify within
Bush? Grass? Boundary & correct range

S? \Size for bush

SIZ

SA: Spectral

Attribute
Matcher

Bush (j. to ground plane)

Grass

Figure 26. Strategy for computing size and distance of unoccluded object

which touches ground. The SA KS is used to verify that the regions

expected to be bush and grass. The fact that they have a common
boundary implies that the bottom of the bush is not occluded
(assuming the ground plane is planar). The perspective KS is used

to compute the distance and size, while the object size KS verifies

that the computed size is in the expected range of bush sizes.
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size to be computed. Note that iii order to carry out this
analysis, the system emplooed h* ;'[) schema, the. spectral
attribute KS# and the perspective KS. The inference drawn from

this chain of hypotheses, namely that the region represents a
bush, can be partially validated by noting that the computed size
falls within the allowed range for bushes stored in long-term

memory (see VI.7).

Figure 27(a) describes the camera geometry from a bird's eye
view with the image plane shown in Frunt of the focal point for
convenience. The range, offset, arid elevation of a
surface/object in the physical world must be computed in terms of
the viewer-centered coordinate system involving the line of sight
of the camera. Figure 27(b) lists results of applying the
perspective KS, under control of the kD schema, to selected
regions of our test image. All the regions considered (bushes,
shutters, house wall) lie roughly (particularly the bushes) in a
pair of planes which are vertical to the ground plane and
oriented at a diagonal to the right, away Prom the viewer. The
location of objects are graphically portrayed in the bird's eye

view of Figure 27(c).

In order to use the results in ati efFective manner, an error
analysis should be taken into consideration. With an assumption

of ground planarity and a camera model (Focal length 5 50 mm,

elevation about 2 meters, because the person was standing on
higher ground, tilt 2 degrees upward), then the range of a
physical point in the ground plane can be derived directly from
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the image coordinates of the point (in pixels). However, the

I computation is not a linear function oP this image distance, and

both the physical range and its associated error increase

exponentially. Table IV lists the absolute and relative error of

a one-half pixel error for each row of pixels starting from the

top of the image (i.e., row 1 in our 12Dx128 pixel image). The

error in the range is shown superimposed on the location of

objects in Figure 27(c). A one-half pixel error in width will

produce an error in physical width which is relatively constant

over the image unless the camera ha. a wide-angle lens (e.g., a

fish-eye lens). Note that error in range will propagate directly

into an error in physical height and width and this must be taken

into consideration by the object size KS.

Even such simple perspective results as shown provide the

beginnings of a 3D spatial layout. "the ranges of the row of

bushes in front of the house provide a range of possible

orientations for region 56 (the house wall). This partial plan,

shown ns a bird's eye view, is illustrated in Figure 27(c). The

angle of the shutters has been computed to be 24 degrees from the

line of sight. The house in Figure 3(a) does not seem to be

oriented at such a steep angle, but there is significant

foreshortening. This orientation has been determined to be

accurate via external physical examination of the environment.

I.
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wor11 C004nmrt!.

World

Coordinates

Y Rnngo: distance to object on a line perpendicular to tiage plane

X Offset., distance of object to right of line of sight

1XI-X21 Vidth of object: Ioffset of right aide -- offset of 'left sidei

Elevation: distance of object above ground plane

Z2 -21  Height of object: elevation of top -- elevation of bottom

(a)

Region IRepliy Linge Offset Width Height Assumpt ions

90 Bush 32.0 2.32 1.01 vertical, attached to
ground

99 House 39.1 $ase as 90

front

82 & 90 Bush 32.0 .472 2.54 1$9 snm as 90; 82 vertical
h 0i , vith same range as 90

79 Bush 37.5 3.78 2.63 1.61 aseo as 90

83 Bush 40.9 6.54 1.58 1.48 ww as 90

House ki'd"T lin one
$6 ue 39.1 2.39 2.83 plane, range of 56 is

front saw, as 99; 56 Is vertical

47 Shutter 33.0 .315 .300 1.50 vertical, height - 1.5 m

50 Shutter 34.8 1.22 .237 1.50 height - 1.5 m

51 Shutter 34.8 1.70 .237, 1.50 height - 1.5 m

54 Shutter 36.7 2.54 .250 1.50 height - 1.5 a

60 Shutter 44.0 5.15 .300 1.50 hehight - 1.5 m

(b)

Figure 27.
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Figure 27. Results of forming a spatial plan using the Perspective KS.
(a) Imaging geometry and description of terms used in presenting
the perspective results. The Z axis represents the gravitational

vertical; for the example image, the line of sight is inclined 20
from the X,Y plane. (b) Computation of physical location and size
based upon assumptions shown in the right-hand column. (c) Ground

plan of house determined by the perspective KS. The results of (b)
in terms of range and offset fix the locations of objects in the X,Y

plane. Both range and offset are expressed in meters. The two
vert. Lal scales show the correlation between range and rows of

pixels in the image. If a pixel in a row is aesumed to have
elevation 0, then the physical range is obtained by reading the
range scale. The error range of Table IV is superimposed as a
vertical line through the location of the bushes; the angle of

the bushes is computed to be 240 from the line of sight.
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Pixel in Ro Computed Range Absolute Error j Relative ErrorP ofpixel (meters) (%)
bottom
of->128 27.1 .4.6 1.5
image 127 28.0 .442 1.6

126 28.9 .472 i.6
125 29.9 .504 1.7

124 30.9 .540 1.7
123 32.0 .580 i.8
122 33.2 .624 1.9
121 34.5 .674 19
120 35.9 .730 2.0

L
119 37.5 .794 2.1
118 39.1 .865 2.2
117 40.9 .945 2.3
116 42.9 1.042 2.4
115 45.1 1.15 2.5

114 47.5 1.28 2.7
113 50.2 1.43 2.8
112 53.3 1.61 3.0
ill 56.7 1,82 3.2
110 60.6 2.01 3.4

109 65.0 2.39 3.7
108 70.2 2.79 4.0
107 76.2 3.30 4.3
106 83.4 3.95 4.7
105 92.2 4.82 5.2

104 102.9 6.01 5.8
103 116. 7.71 6.6
102 134. 10.25 7,6
101 158. 14.3 9.0
100 193. 21.3 11.0

99 247. 35.1 14,2
98 342, 69.0 20.1

horizon97 559. 197.1 35.2
96 1529. 5294. 346.
95 -6180. 296.

Table IV. Error analysis for perspective KS. It is asvomed that a pixel
represents a physical point in the ground plane (i.e., at elevation
0). The range of the physical point and its associated error, under
an assumption of one-half pixel error in the image, are computed as
a function of the row of pixels in which it appears in the image.
This table was derived via the camera model for the specific image
under consideration: f = 50 mm, tilt = 20, elevation = 2 m (because
the picture was taken from a slight rise in the terrain).
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VI.7. Object Hguotheses Based on Sizc.

Once the perspective KS has provided hypotheses about ranges

of surfaces and the physical sizes of their projections, the size

KS can be used to generate object hypotheses on the basis of the

computed sizes. Figure 28 shows the hypotheses and tdueir

associated confidences formed by applying the size KS to selected

regions from Figure 3. In each case, the default range on size

(computed size +5%) was used, although these values can be set by

the result of the perspective KS and the location of the region

in the image. Also note that these results could be filtered by

spatial location, much as the hypotheses Formed from the spectral

attribute matcher were. This results iii a partial check on the

assumpt!ons used by the perspective KS during the computation of

the size.

VI.8. Rottom-UR _chemg lstantiation

The results discussed in the previous sections (VI. 1 to

VI.7) were obtained primarily on the basis of top-dawn guidance

from the correct 2D schema. This szction describer a simple

experiment to instantiate a schema on the basis ef bittom-up

data.

In this experiment, the inference niet was used to propagate

data upwards from the object level to the schema level, assuming

that bush. tree, four zhutters, and gras.s were instantiated at

the object level. From the results cited earlier, it is

reasonable to expect that these objects could be obtained from
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Figure 28. Summary of results of object size KS for selected regions of
Figure 3. The sizes shown were computed by the perspective KS using
the default + 5% error range (see Figure 17). The actual range can
be set by the perspective KS on the basis of the error analysis.
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bottom-up analysis of the image- bus.h, tree, and grass from the
li spectral attribute matchers. and shutter. nd, roof from the

combined horizo6 filter, 2D shape matcher, perspective, and size.

I The results o this experiment are shown in Table Vi they
li overlap somewhat those shown in Table M'1. The strategy used to

obtain the results was very cTude. They are based solely on the

I ~ propagation of the set of object idcntities t6o the schema level

via the inference net. No attempt was made to validate the

results via top-down matches, such as spatial location, or any

other information in the schema. Note that instantiating one or

two shutters increases the confidence oP the house scene schema

as expectedi additional instantiations will not significantly

increase this confidence. Information about the expected number

of shutters on a house (or for a more exict example, the number

of tires on a car) is stored in arcs in LTM and is thus taken

into account by the inference net KS.

VII. COtNCLUSIONS

The results cited in this paper represent the current state

1 of development of the VISIONS system. A top-down interpretation

of a scane has been successfully perPormed, although the

conditions under which this interpretation was obtained were

highly constrained. It demonstrates some degree of integration

of the system, from automatic segmentation of the digitized input

I.
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Table V. Experiments in the bottom-up instantiation of schemas. These

results are based on the object identities shown, and are expected

to be derived predominantly from bottom-up processing. The results

are preliminary.



through symbolic output of object identities and generation of a

-, rough ,plan of the th.ee-dimensional space in the scene.

The primary emphasis of our curtrent efforts is on the
development of strategies by which the man4 knowledge sourcescan

be integrated in order to int9Tpret 2D color images. However,

the ability to obtain the correct interpretation is inherently

ft linked to thequality of information provided by these processes:
without plausible hypotheses aboul the images there isn't any

control strategy worthy of investigatfong! Nevertheless, it is
not feasible for us to attempt to perPorm extensive research in

all the areas represented by the KSs. 'litis, swe mutt balance our

efforts in the development of more complete kiiowledge sources

against the development of interpretation stratoles. Cu1-',ntlyo

we have implemented at least a simple version (,nd somtiimes a

comples version) of several KSs.

Each of the KSs developed can be uted :s diil rent ways to
produce several different kinds of hypothees. Th* expoyiments

f already performed seem to indicate that thea May, ba many

mini-strategies for using the KSs in particular wayg across the
range of images. For example, the per-,pective KS can determine

physical dimensions of surfaces, while the object size KS uses

these rasults to produce a confideuice measure for object
hypothesesi or the horizon KS can be used to filter implausible

object identities from the output oF the spectral attribute

matcher KS. Interesting strategies can be modelled in terms of

the overlap of information related to perspective, occlusion,

[I
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size, shape) junction analystis, etc. With propir desikgn the. set

of local procestes, may be built, t answer the q.stions 'that are

of importance to each other, £nd this network of pOrcess"'0s can be

flexibly and incrementally constructed. As the strategies are

understood, they can be incremsntal!4 embedded in the 'schemas.

Tha results presented in this paper we'e geherated via

top-down control of the KGW using a specific 2D schema-- in

effect a plan -- for a specific house scene. The analVlsis was

highly biased towards success because the schem is tuned to the

particular situation: the case oP looking at a familiar scene

from a familiar point of view. It dcos however, show some of

the ways that the KSs are able to interact, and can also be

viewed as an experiment in verifying that some stored schema is

applicable to a given image. The last experiment demonstrates

bottom-up interaction of the KSs in an attempt to instantiate the

proper schema from a set of schemas.

The facilities now exist for actua]ly developing to a much

deeper level some of the ideas we have only been able to suggest

as promising. The benefits of some of +he interesting

developments of our colleagues in the research community over the

last few years has led to a deeper appreciation of the problems

get remaining. This is reflected somewhat in a shift of research

emphasis) as we propose a highly structured research paradigm for

exploring the issues we set forth. A series of increasingly more

difficult experiments will provide an experimental methodology

for developing schema-driven (e.g., top-down) control mechanisms;
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ea c h succeeding, experiment will assume a .set of weaker

constraints, representing image. inteipretation tasks where a

decreasing amount of knowledge of the situation is available. It

L is worth noting, howeverthat the basic apprdach is not

substantially different from the initial top-down approach that
started the VISIONS project [HAN74, RIS743 although it is

conside~ably richer in detail.
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